Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JMIR Res Protoc ; 12: e48183, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-20234543

ABSTRACT

BACKGROUND: In hospitalized patients with COVID-19, the dosing and timing of corticosteroids vary widely. Low-dose dexamethasone therapy reduces mortality in patients requiring respiratory support, but it remains unclear how to treat patients when this therapy fails. In critically ill patients, high-dose corticosteroids are often administered as salvage late in the disease course, whereas earlier administration may be more beneficial in preventing disease progression. Previous research has revealed that increased levels of various biomarkers are associated with mortality, and whole blood transcriptome sequencing has the ability to identify host factors predisposing to critical illness in patients with COVID-19. OBJECTIVE: Our goal is to determine the most optimal dosing and timing of corticosteroid therapy and to provide a basis for personalized corticosteroid treatment regimens to reduce morbidity and mortality in hospitalized patients with COVID-19. METHODS: This is a retrospective, observational, multicenter study that includes adult patients who were hospitalized due to COVID-19 in the Netherlands. We will use the differences in therapeutic strategies between hospitals (per protocol high-dose corticosteroids or not) over time to determine whether high-dose corticosteroids have an effect on the following outcome measures: mechanical ventilation or high-flow nasal cannula therapy, in-hospital mortality, and 28-day survival. We will also explore biomarker profiles in serum and bronchoalveolar lavage fluid and use whole blood transcriptome analysis to determine factors that influence the relationship between high-dose corticosteroids and outcome. Existing databases that contain routinely collected electronic data during ward and intensive care admissions, as well as existing biobanks, will be used. We will apply longitudinal modeling appropriate for each data structure to answer the research questions at hand. RESULTS: As of April 2023, data have been collected for a total of 1500 patients, with data collection anticipated to be completed by December 2023. We expect the first results to be available in early 2024. CONCLUSIONS: This study protocol presents a strategy to investigate the effect of high-dose corticosteroids throughout the entire clinical course of hospitalized patients with COVID-19, from hospital admission to the ward or intensive care unit until hospital discharge. Moreover, our exploration of biomarker and gene expression profiles for targeted corticosteroid therapy represents a first step towards personalized COVID-19 corticosteroid treatment. TRIAL REGISTRATION: ClinicalTrials.gov NCT05403359; https://clinicaltrials.gov/ct2/show/NCT05403359. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48183.

2.
Int J Obes (Lond) ; 46(11): 2000-2005, 2022 11.
Article in English | MEDLINE | ID: covidwho-1991549

ABSTRACT

OBJECTIVE: A fixed 6 mg dexamethasone dose for 10 days is the standard treatment for all hospitalised COVID-19 patients who require supplemental oxygen. Yet, the pharmacokinetic properties of dexamethasone can lead to diminishing systemic dexamethasone exposure with increasing body mass index (BMI). The present study examines whether this translates to overweight and obesity being associated with worse clinical outcomes, defined as ICU admission or in hospital death, in COVID-19 patients treated with fixed-dose dexamethasone. METHODS: We conducted a single centre retrospective cohort study in COVID-19 patients who were admitted to a non-ICU ward and were treated with dexamethasone (6 mg once daily for a maximum of ten days) between June 2020 and January 2021. Univariable and multivariable logistic regression analyses were conducted to assess the association between BMI-categories and an unfavourable clinical course (ICU admission and/or in hospital death). Analyses were adjusted for age, comorbidities, inflammatory status, and oxygen requirement at admission. For reference, similar analyses were repeated in a cohort of patients hospitalised before dexamethasone was introduced (March 2020 through May 2020). RESULTS: In patients treated with dexamethasone (n = 385) an unfavourable clinical course was most prevalent in patients with normal weight (BMI < 25) compared to patients with overweight (BMI 25-30) and patients with obesity (BMI ≥ 30) with percentages of 33, 26 and 21% respectively. In multivariable analyses, there was no association between BMI-category and an unfavourable clinical course (respectively with aORs of 0.81 (0.43-1.53) and 0.61 (0.30-1.27) with normal weight as reference). In the reference cohort (n = 249) the opposite was observed with an unfavourable clinical course being most prevalent in patients with overweight (39% vs 28%; aOR 2.17 (0.99-4.76)). In both cohorts, CRP level at admission was higher and lymphocyte count was lower in patients with normal weight compared to patients with obesity. CONCLUSIONS: Overweight and obesity are not associated with an unfavourable clinical course in COVID-19 patients admitted to a non-ICU ward and treated with 6 mg dexamethasone once daily.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Overweight , Humans , Overweight/complications , Overweight/drug therapy , Overweight/epidemiology , COVID-19/complications , Hospital Mortality , Retrospective Studies , Obesity/complications , Obesity/drug therapy , Obesity/epidemiology , Body Mass Index , Dexamethasone/therapeutic use , Oxygen
3.
Front Endocrinol (Lausanne) ; 12: 747732, 2021.
Article in English | MEDLINE | ID: covidwho-1598924

ABSTRACT

Objective: To evaluate the association between overweight and obesity on the clinical course and outcomes in patients hospitalized with COVID-19. Design: Retrospective, observational cohort study. Methods: We performed a multicenter, retrospective, observational cohort study of hospitalized COVID-19 patients to evaluate the associations between overweight and obesity on the clinical course and outcomes. Results: Out of 1634 hospitalized COVID-19 patients, 473 (28.9%) had normal weight, 669 (40.9%) were overweight, and 492 (30.1%) were obese. Patients who were overweight or had obesity were younger, and there were more women in the obese group. Normal-weight patients more often had pre-existing conditions such as malignancy, or were organ recipients. During admission, patients who were overweight or had obesity had an increased probability of acute respiratory distress syndrome [OR 1.70 (1.26-2.30) and 1.40 (1.01-1.96)], respectively and acute kidney failure [OR 2.29 (1.28-3.76) and 1.92 (1.06-3.48)], respectively. Length of hospital stay was similar between groups. The overall in-hospital mortality rate was 27.7%, and multivariate logistic regression analyses showed that overweight and obesity were not associated with increased mortality compared to normal-weight patients. Conclusion: In this study, overweight and obesity were associated with acute respiratory distress syndrome and acute kidney injury, but not with in-hospital mortality nor length of hospital stay.


Subject(s)
Acute Kidney Injury/complications , COVID-19/mortality , Hospital Mortality , Hospitalization , Obesity/complications , Respiratory Distress Syndrome/complications , Aged , Female , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Patient Discharge , Respiration, Artificial , Retrospective Studies , Treatment Outcome
4.
J Diabetes Metab Disord ; 20(2): 1155-1160, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1286208

ABSTRACT

Purpose: Inhibition of dipeptidyl peptidase (DPP-)4 could reduce coronavirus disease 2019 (COVID-19) severity by reducing inflammation and enhancing tissue repair beyond glucose lowering. We aimed to assess this in a prospective cohort study. Methods: We studied in 565 patients with type 2 diabetes in the CovidPredict Clinical Course Cohort whether use of a DPP-4 inhibitor prior to hospital admission due to COVID-19 was associated with improved clinical outcomes. Using crude analyses and propensity score matching (on age, sex and BMI), 28 patients using a DPP-4 inhibitor were identified and compared to non-users. Results: No differences were found in the primary outcome mortality (matched-analysis = odds-ratio: 0,94 [95% confidence interval: 0,69 - 1,28], p-value: 0,689) or any of the secondary outcomes (ICU admission, invasive ventilation, thrombotic events or infectious complications). Additional analyses comparing users of DPP-4 inhibitors with subgroups of non-users (subgroup 1: users of metformin and sulphonylurea; subgroup 2: users of any insulin combination), allowing to correct for diabetes severity, did not yield different results. Conclusions: We conclude that outpatient use of a DPP-4 inhibitor does not affect the clinical outcomes of patients with type 2 diabetes who are hospitalized because of COVID-19 infection.

5.
Clin Microbiol Infect ; 27(2): 264-268, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-932986

ABSTRACT

OBJECTIVE: To compare survival of individuals with coronavirus disease 2019 (COVID-19) treated in hospitals that either did or did not routinely treat patients with hydroxychloroquine or chloroquine. METHODS: We analysed data of COVID-19 patients treated in nine hospitals in the Netherlands. Inclusion dates ranged from 27 February to 15 May 2020, when the Dutch national guidelines no longer supported the use of (hydroxy)chloroquine. Seven hospitals routinely treated patients with (hydroxy)chloroquine, two hospitals did not. Primary outcome was 21-day all-cause mortality. We performed a survival analysis using log-rank test and Cox regression with adjustment for age, sex and covariates based on premorbid health, disease severity and the use of steroids for adult respiratory distress syndrome, including dexamethasone. RESULTS: Among 1949 individuals, 21-day mortality was 21.5% in 1596 patients treated in hospitals that routinely prescribed (hydroxy)chloroquine, and 15.0% in 353 patients treated in hospitals that did not. In the adjusted Cox regression models this difference disappeared, with an adjusted hazard ratio of 1.09 (95% CI 0.81-1.47). When stratified by treatment actually received in individual patients, the use of (hydroxy)chloroquine was associated with an increased 21-day mortality (HR 1.58; 95% CI 1.24-2.02) in the full model. CONCLUSIONS: After adjustment for confounders, mortality was not significantly different in hospitals that routinely treated patients with (hydroxy)chloroquine compared with hospitals that did not. We compared outcomes of hospital strategies rather than outcomes of individual patients to reduce the chance of indication bias. This study adds evidence against the use of (hydroxy)chloroquine in hospitalised patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Chloroquine/therapeutic use , Hospitals/standards , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/pathology , Female , Hospital Mortality , Hospitals/statistics & numerical data , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Netherlands/epidemiology , SARS-CoV-2 , Standard of Care
SELECTION OF CITATIONS
SEARCH DETAIL